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PREVIOUS RESEARCH

▶ Cognitive & neural processes that occur during encoding are pivotal to later
memorability [1]

▶ During encoding, items that are later remembered (as opposed to those
that are later forgotten) exhibit. . .
▷ greater positivity between 400ms and 800ms post onset in the
centro-parietal region → subsequent memory, or Dm, ERP effect [1, 2, 3]

▷ greater synchronisation in theta (4−7Hz) & gamma bands (>30Hz) [4]
▷ greater desynchronisation in alpha (8−12Hz) & beta bands (13−29Hz)
[5, 6]

▷ greater theta-gamma phase-amplitude coupling [7]
▶ However, to date, encoding of novel words has only been studied once and

with ERPs only [8]
▷ Dm effect was observed in the translation (trained novel words → English
words) but not in the semantic-relatedness judgement (trained novel
primes & English targets) task

RESEARCH QUESTION

▶ Are there differences between the neural correlates of successful vs. not
successful encoding in learning of novel names for novel concepts?

▶ 3 measures of neural activity during encoding:
▷ ERPs
▷ time-frequency representations of power (TFRs) in theta (4−7Hz), alpha
(8−12Hz), beta (13−29Hz), low gamma (30−60Hz), & high gamma
(61−100Hz) bands

▷ theta-low gamma phase-amplitude coupling (PAC; results of this analysis
are not reported here, but see https://psyarxiv.com/tfks3/)

▶ Pre-registration, data, scripts, pre-print, & supplementary
materials are publicly available at https://osf.io/mg4kr/

DESIGN & PROCEDURE

Participants
▶ 72 neurotypical & monolingual speakers of Aus English (28 male, age: M =

20.94, SD = 3.86)

Learning phase
▶ novel names for a set of 20 novel concepts presented with their definitions
▶ 4 EEG recordings per word, recordings 2–4 used for the analysis

Example of one trial in the learning phase.

Cued recall
▶ type the names of the trained novel concepts given their definitions

Pre-processing of EEG data
▶ at least 20 trials per participant per condition (correct vs. incorrect)
▷ ERP dataset
▶ Epochs: −200ms to 1000ms relative to stimulus onset
▶ 31 participants (12 male, age: M = 21.77, SD = 3.93)
▷ TFR dataset
▶ Epochs: −200ms to 1500ms relative to stimulus onset
▶ 25 participants (9 male, age: M = 22.32, SD = 4.10)

RESULTS

Note that below we only report results of two of the pre-registered analyses; for outcomes of the pre-registered PAC analysis as well as those of exploratory
analyses see https://psyarxiv.com/tfks3/.

▶ Mass univariate analyses using LIMO [9]
▶ Correction for multiple comparisons via Threshold Free Cluster

Enhancement technique with bootstrapping [10, 11]
▶ No t-values remained significant after correction in either analysis!

ERP responses for recalled vs. not recalled novel names
at centro-parietal electrodes

Topographic maps of time-frequency power during
encoding of novel names

DISCUSSION

Most likely reasons for these outcomes:
▶ Low signal-to-noise ratio
▷ But note that effects of interest were also found in studies with N of
participants and trials similar to ours [12, 13]

▶ Genuine differences in encoding of familiar (i.e., well-established in semantic
memory) vs. novel words (both name & concept are novel)

▶ Neural correlates of successful encoding are domain-general but
experimental effects (on ERPs, TFRs, or PAC) manifest only under certain
conditions
▷ Are existing theories [4, 5, 6] underspecified and/or based only on a
subset of available findings?

→ See pre-print for a detailed discussion of
these & other possible accounts

https://psyarxiv.com/tfks3/
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