

Semantic integration of new vocabulary: does learning context matter?

Maria Korochkina ^{1,2,3} Audrey Bürki ² Lyndsey Nickels ³

¹International Doctorate for Experimental Approaches to Language and Brain (IDEALAB): Universities of Potsdam, Trento, Newcastle, Groningen and Macquarie University ²University of Potsdam ³Macquarie University

INTRODUCTION AND RESEARCH QUESTION

- ▶ In second language teaching, introducing new vocabulary in semantic categories, i.e. semantic clustering, has long become the gold standard and remains the most common practice;
- ► Empirical evidence suggests that this practice might have a detrimental effect on word learning [1–4].

Why might the learning context matter?

- ► Interference Theory and Distinctiveness Hypothesis [5, 6]: Increase in similarity \rightarrow increase in difficulty of learning and remembering;
- **►** Contextual Interference Effect [7, 8]: Contextual interference due to semantic clustering \rightarrow more effortful and slower learning BUT better subsequent retention and transfer.

Research question

▶ Does learning context modulate **semantic integration** of novel names for familiar concepts?

DESIGN AND PROCEDURE Pre-registered at https://osf.io/8crxq on 16 April 2019

Participants

▶ 60 monolingual German native speakers (20% male, mean age 24.3, SD 4.22).

Procedure

Procedure Overview

LEARNING PHASE

Each participant learned novel names for 24 familiar concepts. The novel names were novel phonological forms, phonotactically legal in German.

Exposure 1: Context presentation for categorically related vs. unrelated context

Exposures 2 and 3: Word repetition

- ▶ 2 conditions: cat. *related* (CRelated) vs. unrelated (Unrelated)
- ► 12 words per condition
- hours in-between sessions (mean 24.21, SD 2)

Exposures 4-11 (Session 1) and 1-4 (Session 2): Picture naming and word repetition

TEST PHASE: Picture-word interference task

Targets: pictures of objects not used during learning

Distractors:

- ► German words sem. related (1) vs. unrelated (2) to the target
- ► Novel trained words sem. related (3) or unrelated (4) to the target

Prediction:

Semantic interference effect (SIE) [9]: Slower naming of target pictures when distractors are related in meaning in comparison to when they are not

▶ In word learning, reflects semantic integration of novel vocabulary [10].

RESULTS (Generalized) linear mixed effects models, R package Ime4 [11]

Response times Accuracy 24 hours including sleep

LEARNING PHASE

Growth Curve Analysis [12] on accuracy and RTs during learning:

- ► Higher accuracy for words taught in the cat. *unrelated* context;
- ► No effect of learning context on RTs.

German distractors

	Accuracy				Response times				
	Coef.	SE	z-val.	p-val.	Coef.	SE	t-val.	p-val.	
Intercept	2.46	0.19	13.13	< 0.001	6.96	0.02	282.53	< 0.001	
Linear	4.03	0.21	19.19	< 0.001	-0.41	0.02	-16.35	< 0.001	
Quadratic	-0.75	0.11	-6.65	< 0.001	0.06	0.01	5.13	< 0.001	
Cubic	1.53	0.09	15.67	< 0.001	-0.15	0.01	-13.46	< 0.001	
Learn.Cont.	0.07	0.02	2.67	0.008	0.0006	0.008	0.07	0.943	

TEST PHASE Picture-word interference task

Novel trained distractors

Distractor condition

1000 p = 0.01Sem. related Sem. unrelated Learning context of the distractors Distractor condition

- SIE for both German and novel trained distractors;
- ► Novel trained distractors: Interaction Condition x Learning context;

		Germa	n distracto	rs	Novel trained distractors			
	Coef.	SE	t-val.	p-val.	Coef.	SE	t-val.	p-val.
Intercept	-12.7	0.24	-53.25	< 0.001	-12.63	0.25	-50.43	< 0.001
Condition	0.41	0.16	2.6	0.01	0.19	0.04	4.6	< 0.001
Learn.Cont.					-0.02	0.09	-0.2	0.83
Condition:Learn.Cont.					0.11	0.04	2.6	0.009

Post-hoc analysis: SIE only for distractors trained in the cat. related context: $\beta = 0.31$, SE = 0.11, t = 2.85, p = 0.006.

DISCUSSION AND CONCLUSION

Semantic clustering leads to

- ightharpoonup lower accuracy during learning ightharpoonup a less efficient learning process;
- ▶ This is in accord with the *Interference Theory*, *Distinctiveness Hypothesis* and Contextual Interference Effect;
- \triangleright stronger semantic interference effect in the PWI task \rightarrow faster semantic integration of new vocabulary.
- → Increased interference due to semantic clustering leads to a slower learning process BUT stronger connections within the mental lexicon and facilitated integration of new material.

REFERENCES

- [1] M. Finkbeiner and J.L. Nicol. Semantic category effects in second language word learning. Appl. Psycholinguist., 24:369–383, 2003.
- [2] T. Tinkham. The effect of semantic clustering on the learning of second language vocabulary. System, 21(3):371-380, 1993. [3] T. Tinkham. The effects of semantic and thematic clustering on the learning of second language vocabulary. Second Lang. Res., 13(2):138-163, 1997.
- [4] R. Waring. The negative effects of learning words in semantic sets: A replication. System, 25(2):261-274, 1997.
- [5] R.G. Crowder. Principles of learning and memory. Hillsdale, NJ: Lawrence Erlbaum, 1976.
- [6] R.R. Hunt and D.B. Mitchell. Independent effects of semantic and nonsemantic distinctiveness. J. Exp. Psychol. Learn. Mem. Cogn., 8(1):81-87, 1982. [7] W.F. Battig. Intratask interference as a source of facilitation in transfer and retention. In R.F. Thompson and J.F. Voss, editors, Topics in learning and performance, pages 131-159. New York: Academic Press, 1972.
- [8] W.F. Battig. The flexibility of human memory. In L.S. Cermak and F.I.M. Craik, editors, Levels of processing and human memory, pages 23–44. Mahwah, NJ: Erlbaum, 1979.
- [9] Albert Costa, F.-Xavier Alario, and Alfonso Caramazza. On the categorical nature of the semantic interference effect in the picture-word interference
- paradigm. Psychonomic Bulletin and Review, 12(1):125-131, 2005. [10] F. Clay, J.S. Bowers, C.J. Davis, and D.A. Hanley. Teaching adults new words: The role of practice and consolidation. J. Exp. Psychol. Learn. Mem.
- Cogn., 33(5):970–976, 2007. [11] D. Bates, M. Mächler, M. Bolker, and S. Walker. Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67(1):1–48, 2015.
- [12] D. Mirman. Growth Curve Analysis and Visualization Using R. Chapman and Hall / CRC, 2014.