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What is morpheme knowledge for?

« Most English words are built by recombining stems and affixes

cleaner, cleanly, unclean
teacher, banker, builder

« Morpheme knowledge enables rapid access to the meanings of familiar words

 Itis also crucial for computing the meanings of unfamiliar words

bright + -ify — brightify



How is morpheme knowledge acquired?

- Limited time for explicit instruction in school Lo

« Teacher knowledge often patchy [ —mm————=
The Suffixes '-tion', '-sion’,

‘-ssion' and '-cian’
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« Form-meaning relationship more salient in written language

 bonus, atlas, service, princess vs. hazardous

— Morpheme knowledge largely acquired via text experience



Pre-requisites for morpheme learning

unknown deactivate

unfair decode

unafraid decompose

unlikely demand

unconvinced deceive

unsure depend

unwell deliver (de- + -liberare)

« Must have consistent meaning transformation
« Must occur with a high number of distinct stems (type frequency)

« Must be detectable

Tamminen et al., 2015, Cogn Psychol
Ulicheva et al., 2020, Cognition
Korochkina & Rastle, 2025, npj Sci Learn



What's children’s experience of morphology like
in the wild?



The Children & Young People’s Books Lexicon

7-9 years 10-12 years 13+ years
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« 1,200 popular books, 400 books per age band

« Over 70 mln words & over 105,000 distinct words

Korochkina et al., 2024, QJEP



Morphology in children's books

* Roughly half of all distinct words are complex
« Few complex words are used repeatedly or in many books

« Children are likely to see a complex word but unlikely to see this word again

« Only a few affixes have reasonably high type frequency before 13+ texts

Korochkina & Rastle, 2025, npj Sci Learn
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Korochkina & Rastle, 2025, npj Sci Learn



Morphology in children's books

* Roughly half of all distinct words are complex
« Few complex words are used repeatedly or in many books

« Children are likely to see a complex word but unlikely to see this word again

« Only a few affixes have reasonably high type frequency before 13+ texts

- Many affixes difficult to detect

Korochkina & Rastle, 2025, npj Sci Learn



Many affixes are difficult to detect

X

\\\;‘\‘Q = '
SN~

SR

© Prefixed words detectable with RegEx
@ Prefixed words not detectable with RegEx
@ Words incorrectly parsed as prefixed

Korochkina & Rastle, 2025, npj Sci Learn



Many affixes are difficult to detect

1/3 detectable
deactivate, decode, decompose

1/3 undetectable
demand, deceive, depend

1/3 false alarms
deliver, detail, defeat

@ Prefixed words detectable with RegEx
@ Prefixed words not detectable with RegEx
@ Words incorrectly parsed as prefixed

Korochkina & Rastle, 2025, npj Sci Learn



Many affixes are difficult to detect
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© Prefixed words detectable with RegEx
@ Prefixed words not detectable with RegEx
@ Words incorrectly parsed as prefixed

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina & Rastle, 2025, npj Sci Learn



Many affixes are difficult to detect

Easy to detect
kindness, weakness, sadness

SRR,

© Prefixed words detectable with RegEx
@ Prefixed words not detectable with RegEx
@ Words incorrectly parsed as prefixed

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina & Rastle, 2025, npj Sci Learn



Many affixes are difficult to detect

SRR,

Mostly undetectable
© Prefixed words detectable with RegEx @ Suffixed words detectable with RegEx a p p r e C i a te ) g e n er CI te ’ i n teg r ate

@ Prefixed words not detectable with RegEx X
@ Suffixed words not detectable with RegEx

@ Words incorrectly parsed as prefixed y
@ Words incorrectly parsed as suffixed

Korochkina & Rastle, 2025, npj Sci Learn



What constitutes morpheme experience?

1. Allinstances where a complex-looking word is
historically formed through derivation

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



What constitutes morpheme experience?

1. Allinstances where a complex-looking word is
historically formed through derivation
dictionary-based type frequency

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



What constitutes morpheme experience?
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1. All instances where a complex-looking word is
3 historically formed through derivation

~ ~ dictionary-based type frequency

2. Allinstances where affixes are identifiable
without specialised knowledge

Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx

@ Words incorrectly parsed as suffixed

Korochkina et al., In press



What constitutes morpheme experience?

1. All instances where a complex-looking word is
historically formed through derivation
dictionary-based type frequency

2. Allinstances where affixes are identifiable
without specialised knowledge
orthography-based type frequency

Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



What constitutes morpheme experience?

-ly . . .
! 1. All instances where a complex-looking word is

- -less
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—— ~ dictionary-based type frequency
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Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



What constitutes morpheme experience?

!., 1. All instances where a complex-looking word is
i"" historically formed through derivation

e SN\Ray dictionary-based type frequency

!: 2. Allinstances where affixes are identifiable
I without specialised knowledge

iz," orthography-based type frequency

E: 3. Allinstances where affixes are identifiable,
= but false alarms incur a learning penalty
!ff = orthography-based type frequency + false alarm
= = penalty

Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



The false alarm penalty

Shannon entropy

Quantifies the uncertainty about the function of

the orthographic pattern associated with an affix

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Shannon, 1948, Bell Syst Tech J



The false alarm penalty

0.03

Shannon entropy

Quantifies the uncertainty about the function of

the orthographic pattern associated with an affix

Low entropy — little uncertainty — low penalty

High entropy — more uncertainty — high penalty

@ Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

Korochkina et al., In press



Theories in action



The morpheme interference effect

woodness woodnels

word not a word word not a word

- Morphologically-structured nonwords are more difficult, and take longer, to reject

« Skilled readers segment complex-looking words into morphemes

Taft & Forster, 1975, J of Verb Learn & Verb Behav
Crepaldi et al., 2010, Mem & Cogn



Stimuli

« 6 prefixes « Morphologically structured nonwords
* un-, mis-, dis-, pre-, de-, re- * unwood, woodness

« 6 suffixes « Nonwords without morphological structure
« -ness, -ly, -able, -er, -ic, -ate * ubwood, woodnels

« Each participant saw...
« Each affix with 10 stems (120 morphologically structured nonwords)
« Orthographic controls (120 nonwords with no morphological structure)
« 120 morphologically complex + 120 morphologically simple words

Korochkina et al., In press



Stimuli

« 6 prefixes « Morphologically structured nonwords
* un-, mis-, dis-, pre-, de-, re- * unwood, woodness

« 6 suffixes « Nonwords without morphological structure
« -ness, -ly, -able, -er, -ic, -ate * ubwood, woodnels

« Each participant saw 480 letter strings
« Each affix with 10 stems (120 morphologically structured nonwords)
« Orthographic controls (120 nonwords with no morphological structure)
« 120 morphologically complex + 120 morphologically simple words

Korochkina et al., In press



Participants

0~0 o ©
. 0]
O 120 participants ﬁDGD 18 - 40 years old
63 female UK based
56 male V English as a first language
1 non-binary No language disorders

Korochkina et al., In press



Readers are sensitive to morphological structure

a b

B=-253,SE=0.09,p <0.001
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Korochkina et al., In press



What constitutes morpheme experience?

!,, 1. All instances where a complex-looking word is
i i historically formed through derivation

o dictionary-based type frequency

!: 2. Allinstances where affixes are identifiable
B ‘ ;\ N without specialised knowledge

i: - = \ . orthography-based type frequency

Et: = 3. Allinstances where affixes are identifiable,
= —=aas but false alarms incur a learning penalty
! : orthography-based type frequency + false alarm
— penalty

Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx

@ Words incorrectly parsed as suffixed

Korochkina et al., In press



Theory 3 explains data best!

Suffixed words detectable with RegEx
@ Suffixed words not detectable with RegEx
@ Words incorrectly parsed as suffixed

1.

All instances where a complex-looking word is
historically formed through derivation
dictionary-based type frequency

All instances where affixes are identifiable
without specialised knowledge
orthography-based type frequency

All instances where affixes are identifiable,
but false alarms incur a learning penality
orthography-based type frequency + false alarm
penalty

Korochkina et al., In press



Nonwords with “good"” affixes are hard to reject...

Average proportion of correct 'no' responses
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Average response times (ms) for correct 'no' responses

and these rejections take time
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Interim summary -
Quantified morpheme experience in print | AN
l !:n N\ :\ ;
Proposed a new definition of morpheme experience e \\‘ :
Tested this definition against human data | = SN
N =

 Critical step toward a psychologically valid theory of morpheme learning

« However, this approach is still a workaround: needs expert input and reduces
affix meaning to a binary distinction




Modelling affix learning



Distributional semantics

« Aword’s meaning can be inferred from contexts in which it appears

« Similar contexts — similar meanings
« Distinct contexts — more divergent meanings

boat
ship



Distributional semantics

« Aword’s meaning can be inferred from contexts in which it appears

« Similar contexts — similar meanings
« Distinct contexts — more divergent meanings

water passenger sea
boat
ship



Distributional semantics

« Aword’s meaning can be inferred from contexts in which it appears

« Similar contexts — similar meanings
« Distinct contexts — more divergent meanings

water passenger sea
boat 23 15 40
ship 25 20 50
)
« Co-occurrence matrix (e.g., LSA) / neural embeddings (e.g., word2vec) — vector 2
O
: . @) (O) (O
« Collection of vectors for a large number of words - semantic space g 9 2
@) O! @




Compositional distributional semantics
CAQOSS

snowman

Marelli et al., 2017, Cognition



Compositional distributional semantics
CAQOSS

snowman
O O
@) O
@) O
O O
snow man

Marelli et al., 2017, Cognition



Compositional distributional semantics
CAQOSS

snowman
O O
@) O
@) O
O O
snow man
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snow snow man man

Marelli et al., 2017, Cognition



Compositional distributional semantics
CAQOSS

snowman

(@) Model receives /exicalised
9 representations of stems
O and compounds
man

gl 8 S| J8

e 0 o) @

Ssnow snow man man

Model learns the
transformation matrices
such that the compositional
vectors of compounds are
as close as possible to their
lexicalised representations

Marelli et al., 2017, Cognition



CAQOSS applied to affixation
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Our modelling approach

O O ..
O 9 Training set
Lexicalised : o) I
representations un do =
for words & affixed words 1 1 |-
from subs2vec =
(van Paridon & S e -{ - I
Thompson, 2021) A *¢|=g B ¥ o=@ I-
e @ o) @ —
un un do do !;
Affix representations / —
Average of vector I=
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(Westbury & Hollis, 2019)
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CAOSS metrics
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Average proportion of correct 'no' responses

Compared to the false alarm penalty model...

better just as good worse
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Slower when rejecting nonwords with affixes
with...
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Average response times for correct 'no’' responses
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Average response times for correct 'no’' responses

Slower when rejecting nonwords with affixes
with...

richer more coherent less diffuse meanings
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Average response times for correct 'no’' responses

Compared to the false alarm penalty model...

better just as good worse

‘@ <r —ness’
—able
900+

ﬂ

1000

a00
*—er
800 500

1000 10001

—able —able

® |

9001

mis—

.

Average response times for correct 'no' responses
Average response times for correct 'no' responses

“
250 275 3.00 3.25 04 0.5 0.6 562 563 564 565 566

bad Affix richness good bad Affix coherence good good Affix diffuseness bad



Recall our interim summary... —

Quantified morpheme experience in print | N\
| =
Proposed a new definition of morpheme experience ——
Tested this definition against human data —
I—ate

Critical step toward a psychologically valid theory of morpheme learning

However, this approach is still a workaround: needs expert input and reduces
affix meaning to a binary distinction




Conclusions

Quantified morpheme experience in print

l

Proposed a new definition of morpheme experience

l
Tested this definition against human data

Suffixed words detectable with RegEx

« Principled, scalable account of morpheme learning in the wild &z

« Innovation in computational modelling of affix semantics
 First use of CAOSS with “noisy” input
* First attempt to model prefix semantics

Readers' text experience shapes perception of both affix meaningfulness
and plausibility of novel morphemic combinations



Further reading

Article = Open access = Published: 05 May 2025
Morphology in children’s books, and what it means for
learning

Maria Korochkina & & Kathleen Rastle

npj Science of Learning 10, Article number: 22 (2025) ‘ Cite this article

4985 Accesses ‘ 23 Altmetric ‘ Metrics

https://doi.org/10.1038/s41539-025-00313-6
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Further reading

Article = Open access = Published: 05 May 2025
Morphology in children’s books, and what it means for
learning

Maria Korochkina & & Kathleen Rastle

npj Science of Learning 10, Article number: 22 (2025) ‘ Cite this article

4985 Accesses ‘ 23 Altmetric ‘ Metrics

https://doi.org/10.1038/s41539-025-00313-6

Morpheme knowledge is shaped by information available
through orthography

Maria Korochkina', Holly Cooper!, I\Iflarc Brysbaert?, and Kathleen
Rastle

In press in Psychon. Bul. Rev., pre-print at:
https://doi.org/10.31219/0sf.io/ad3jh_v2
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Further reading

Article = Open access = Published: 05 May 2025
Morphology in children’s books, and what it means for
learning

Maria Korochkina & & Kathleen Rastle

% Morphemes in the wild: Modelling affix learning from the
B noisy landscape of natural text

npj Science of Learning 10, Article number: 22 (2025) ‘ Cite this article

4985 Accesses ‘ 23 Altmetric ‘ Metrics

https://doi.org/10.1038/s41539-025-00313-6

Maria Korochkina', Marco Marelli?, and Kathleen Rastle!

Under review, pre-print at:
https://doi.org/10.31234/osf.io/yzcqm_v1

Morpheme knowledge is shaped by information available
through orthography

Maria Korochkina', Holly Cooper!, I\Iflarc Brysbaert?, and Kathleen
Rastle

In press in Psychon. Bul. Rev., pre-print at:
https://doi.org/10.31219/0sf.io/ad3jh_v2
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Thank you!
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Additional slides

Nonword-based metrics



Role of stem-affix combination

3 nonword-based metrics

« Nonword diffuseness: how well-defined or vague a nonword’s meaning is
« Nonword richness: semantic richness of a nonword’s meaning

* Nonword neighbourhood density: proximity of a nonword to its nearest semantic
neighbours

-> Does the inclusion of these metrics into the models with affix-based metrics
improve model fit?



Role of stem-affix combination

3 nonword-based metrics

Yes, for the affix richness
« Nonword richness: semantic richness of a nonword’'s meaning (accuracy only) and affix

diffuseness models

* Nonword neighbourhood density: proximity of a nonword to its nearest semantic

neighbours
& Yes, for all response

times models

-> Does the inclusion of these metrics into the models with affix-based metrics
improve model fit?



Summing up

» Morphologically structured nonwords most difficult to reject when...

 they are semantically rich,
* closely related in meaning to their semantic neighbours,

« contain affixes with richer, more coherent, and less diffuse meanings

 Affix meaningfulness influenced processing more than the overall nonword meaning

 Skilled readers’ judgments of affixed nonwords are driven mainly by the properties
of the affixes they contain, rather than by the specific meaning of the stem-affix
combination in each individual nonword
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