

A behavioural and electrophysiological investigation of novel word learning

Maria Korochkina^{1,2,3}, Lyndsey Nickels¹, Audrey Bürki²

¹ Macquarie University, Australia

² University of Potsdam, Germany

³ International Doctorate for Experimental Approaches to Language and Brain (IDEALAB): Universities of Groningen (The Netherlands), Newcastle (United Kingdom), Potsdam (Germany) & Macquarie University (Australia)

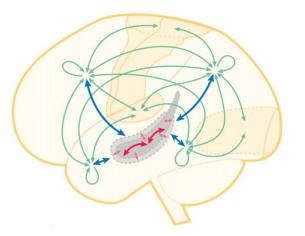
Words in the World 2020

October 17, 2020

What does it mean to learn a word?

Encoding and storing

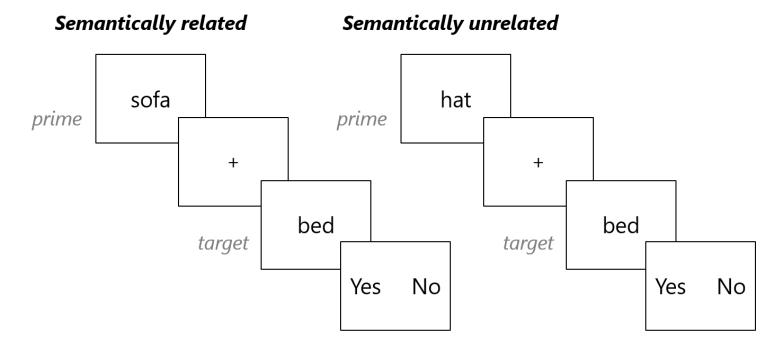
- phonological form
- concept
- association between the word form and the concept


Integrating

• in the network of familiar words and connections

McMurray et al., 2016

Complementary Learning Systems (CLS)


- 2 systems → 2 stages of word acquisition
- Formation of traces in episodic memory (MTL)
- Integration into neocortex through systems consolidation
 - > Lexical plasticity: update predictions
 - > **Pattern completion**: fill in associations

> **Bottom-up processing**: align mappings within & across the lexical system

➔ In tasks that require activation flow over multiple pathways, only integrated novel words can compete for selection

Semantic priming

(e.g. McNamara, 2005)

Semantically related condition:

- Shorter RTs
- **Reduced N400** → automatic processes of lexical-semantic retrieval (e.g. Kutas & Federmeier, 2011)
- Enhanced LPC → episodic memory retrieval & explicit semantic access (e.g. Rugg & Curran, 2007)

Semantic priming with novel words

At targets preceded by semantically related primes

Familiar words as primes & targets	Primes: trained novel words; targets: familiar words	Primes: familiar words; targets: novel trained words
Shorter RTs	 Shorter RTs (e.g. van der Ven et al., 2015) No difference in RTs between conditions (e.g. Batterink & Neville, 2011) 	Shorter RTs (Bakker et al., 2015)
Reduced N400	 Immediately after exposure (e.g. Borovsky et al., 2013; Perfetti et al., 2005) 24h after exposure or later (Breitenstein et al., 2007; Coutanche & Thompson-Schill, 2014; Tamminen & Gaskell, 2013; van der Ven et al., 2015) 	No reduction in N400 either immediately or 24h after exposure (Bakker et al., 2015)
Enhanced LPC		Immediately after and 24h after exposure (Bakker et al., 2015)

Semantic priming with novel words

Suggested interpretation

reduced N400 & enhanced LPC

→ novel words at least partly integrated

Behavioural effect co-occurring with...

enhanced LPC only

→ behavioural effect is subserved by episodic rather than semantic memory

Why all this inconsistency?

Methodological limitations?

- Word-to-word association priming through co-occurrence during learning (Breitenstein et al., 2007; Perfetti et al., 2005)
- Strategic thinking and awareness of manipulation

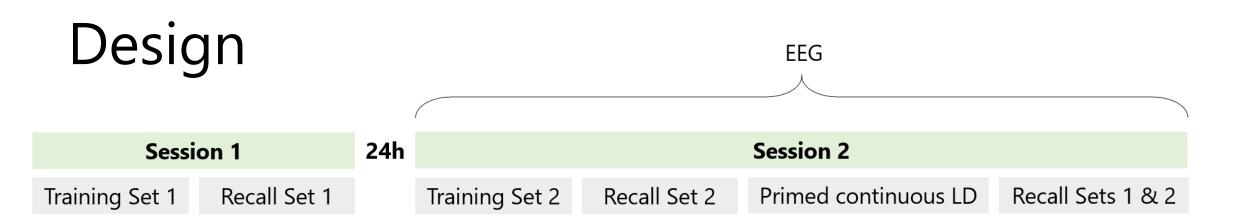
Prime-target relatedness or animacy judgements at targets (Bakker et al., 2015; Breitenstein et al., 2007; Perfetti et al., 2005)

Word judgements done at targets only (Bakker et al., 2015; Batterink & Neville, 2011; Breitenstein et al., 2007; Perfetti et al., 2005; van der Ven et al., 2015)

Different training procedures?

- words paired with pictures (Breitenstein et al., 2007) or definitions (Bakker et al., 2015; van der Ven et al., 2015)
- presented in sentences or texts (Batterink & Neville, 2011; Borovsky et al., 2013)

Current study


In learning of novel names for novel concepts, ...

Integration

• *RQ 1*: How do behavioural markers of integration map onto electrophysiological markers of integration?

Encoding

- *RQ 2.1*: Does LPC amplitude during encoding predict subsequent recall success?
- *RQ 2.2*: How do neural oscillatory patterns change during encoding?

- 2 sessions with 24h in between
- 2 sets of novel concepts with 20 novel names per set
- Training

> novel names paired with definitions (4 sentences per concept)

- ➤ 4 EEG measures per name in Session 2
- Primed continuous LD
 - > Targets: novel names from both sets
 - > Primes: familiar words, semantically related or unrelated to targets
 - LD at both primes and targets
- Recall: oral & typed responses

To conclude...

We will analyse whether

Integration

• RTs, N400 & LPC at newly trained words are modulated by

> prime-target relationship

time after exposure: 24h (Set 1) vs. 0h (Set 2)

Encoding

- LPC amplitude to novel words during training predicts later recall performance
- How neural oscillatory patterns change during training *(exploratory)*
 - ➢ Power increase in theta band (4-7 Hz) → memory formation & activity within hippocampalneocortical loops? (e.g. Klimesch, 1999)
 - ➢ Beta desynchronization (16-21 Hz) → lexical-semantic processing? (e.g. HansImayr et al., 2012)

Pre-registration to be released soon!

Thank you for your attention!

References

1. Bakker, I., Takashima, A., van Hell, J., Janzen, G., & McQueen, J. (2015). Tracking lexical consolidation with ERPs: lexical and semantic-priming effects on N400 and LPC responses to newly-learned words. *Neuropsychologia*, 79 (Part A), 33–41.

2. Batterink, L., & Neville, H. (2011). Implicit and explicit mechanisms of word learning in a narrative context: an event-related potential study. J. Cogn. Neurosci., 23, 3181–3196.

3. Borovsky, A., Kutas, M., & Elman, J. (2013). Getting it right: Word learning across the hemispheres. *Neuropsychologia*, 51, 825–837.

4. Breitenstein, C., Zwitserlood, P., de Vries, M., Feldhues, C., Knecht, S., & Dobel, C. (2007). Five days versus a lifetime: Intense associative vocabulary training generates lexically integrated words. *Restor. Neurol. Neurosci.*, 25, 493–500.

5. Coutanche, M.N., Thompson-Schill, S.L., 2014. Fast mapping rapidly integrates information into existing memory networks. J. Exp. Psychol. G., 143 (6), 2296–2303.

6. Davis, M., & Gaskell, M. (2009). A Complementary Systems Account of word learning: neural and behavioural evidence. Philos. Trans. R. Soc. B., 364, 3773–3800.

7. Hanslmayr, S., Staudigl, T., & Fellner, M.-C. (2012). Oscillatory power decreases and long-term memory: The information via desynchronization hypothesis. Front. Hum. Neurosci., 6, 74.

8. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev., 29, 169 – 195.

9. Kumaran, D., Hassabis, D., & McClelland, J. L. (2016). What learning systems do intelligent agents need? Complementary Learning Systems Theory updated. *Trends Cogn. Sci.*, 20(7), 512–534.

10. Kutas, M., & Federmeier, K.D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol., 62, 621–647.

11. McClelland, J. (2013). Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. J. Exp. Psychol. G., 142(4), 1190–1210.

12. McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. *Psychol. Rev.*, 102(3), 419–457.

13. McMurray, B., Kapnoula, E.C. & Gaskell, M.G. (2016). Learning and integration of new word-forms: Consolidation, pruning, and the emergence of automaticity. In: Gaskell, M.G. & Mirković, J. (Eds.). Speech Perception and Spoken Word Recognition. Psychology Press, London, pp. 116-142.

14. McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition. New York, NY: Psychology Press.

15. Perfetti, C., Wlotko, E., & Hart, L. (2005). Word learning and individual differences in word learning reflected in event-related potentials. J. Exp. Psychol. Learn. Mem. Cogn., 31, 1281–1292.

16. Rugg, M.D., & Curran, T. (2007). Event-related potentials and recognition memory. *Trends Cogn. Sci.*, 11 (6), 251–257.

17. Tamminen, J., & Gaskell, M.G. (2013). Novel word integration in the mental lexicon: Evidence from unmasked and masked semantic priming. Q. J. Exp. Psychol., 66 (5), 1001–1025.

18. van der Ven, F., Takashima, A., Segers, E., & Verhoeven, L. (2015). Learning word meanings: Overnight integration and study modality effects. PLoS ONE, 10(5), e0124926.